
The SAM-Grid / Runjob Integration

Gabriele Garzoglio, Andrew Baranovski, Sinisa Veseli

February 14, 2005

Abstract

The SAM-Grid is an integrated job, data, and information man-
agement infrastructure adopted by the Run II experiments to assists
with their meta-computing needs. It is currently integrated with the
mc runjob software suite, in order to support the production of simu-
lated events and the reconstruction of raw files for DZero. By design,
mc runjob is used to shield the grid infrastructure from application-
specific knowledge, for example in the preparation of the job environ-
ment. In many practical cases, though, we feel that the separation of
responsibilities is sometimes fuzzy.

The mc runjob team has developed a new suite of software, called
Runjob, which generalizes and extends the capabilities of mc runjob.
The integration between SAM-Grid and Runjob is necessary because
the support for mc runjob will naturally fade away. The integration,
though, is also an opportunity to define a clear separation between the
domains of the two middleware suites and redesign their interaction.

This document states the principles upon which the separation
of responsibilities should be based. It lists a series of application-
specific information that is currently handled by the SAM-Grid and
that we believe should be handled by Runjob. The document also
discusses features of the SAM-Grid that were found of value in our
past experience, hence should be retained for the future. In the end,
it describes the way the SAM-Grid currently uses mc runjob.

1



Contents

1 SAM-Grid and Runjob: Separation of Responsibilities 3

2 Application-Specific Features Implemented in the SAM-Grid 3

3 How SAM-Grid Uses mc runjob 5

2



1 SAM-Grid and Runjob: Separation of Re-

sponsibilities

The SAM-Grid is an integrated job, data, and information management
system. It supports running applications on largely distributed resources.
Ideally, such an infrastructure should be shielded by information that is
application-specific.

In our experience, for high energy physics (HEP) applications, the cre-
ation of the job environment is a non-trivial task, which dramatically influ-
ences the behavior of the application itself. In addition, HEP applications
requires a careful management of the job work flow, which often consist of
chains of multiple executables.

To deal with the details of environment preparation and work flow man-
agement, the DZero community has development a suite of software called
mc runjob. The SAM-Grid uses mc runjob to separate its middleware from
the application layer. In other words, this design clearly separates between a
grid management middleware and a application management mid-
dleware capable of interacting with various grid infrastructures.

In practice, we have seen that there are various ”gray” areas in the def-
inition of the responsibilities between these two entities. In addition, there
are cases where historical needs have dictated the implementation of features
on one middleware suite as opposed to another. Section 2 analyzes some of
the SAM-Grid features that we believe should be best implemented in the
application middleware layer.

2 Application-Specific Features Implemented

in the SAM-Grid

This section lists a series of features that we believe could be migrated to
Runjob.

• Application wrappers: the DZero applications that run today on
the SAM-Grid are not completely grid-enabled. In other words, the
applications do not know how to take advantage of some grid and fabric
services, such as sandboxing, grid monitoring, or some services of data
handling. The SAM-Grid has implemented wrappers that interact with

3



the grid on behalf of the application. Some of these wrappers contain
application-specific knowledge, which we believe should be transferred
to the Runjob framework. The following is the most relevant case.

The SAM-Grid provides facilities to import datasets from SAM in the
job environment. This feature is used, for example, to dynamically
install the DZero software before launching the application. This re-
sulted to be very useful to guarantee the reproducibility of the job
results. Some wrappers use this feature to import files, such as input
data, minimum bias files, and montecarlo generated input files. On the
other hand, for all these cases, the wrapper uses application-specific
knowledge to prepare these files. For example, the wrapper imports
only a specific number of minimum bias files, or a specific set of events
from the generated input.

• Number of application instances: a grid system is responsible for
managing resources according to the policies of the virtual organiza-
tions. A typical example of such policy is maximum time for job com-
pletion. These policies are generally enforced by optimizing metrics
such load of grid services. A mechanism to implement these optimiza-
tions is splitting a job into multiple instances, each executing on dif-
ferent resources. This splitting mechanism must be transparent to the
user, in order to ease job management. For example, if a user wants
to cancel a job request, the system must provide a mechanism to auto-
matically cancel all the jobs instances.

There are situations where the application may be able to recommend
a certain degree of job multiplicity. For example, the DZero recon-
struction application needs in average two days to process an input
file. Splitting the job request into as many jobs as files in the input
dataset is a reasonable policy declaration to minimize job completion.

Currently, these application-specific policies are declared and imple-
mented by the SAM-Grid job management layer. We believe that the
SAM-Grid should be responsible for implementing the policy, but not
for declaring it. In other words, the application middleware should give
SAM-Grid a recommendation on the job multiplicity, thus declaring the
application-specific policy. The SAM-Grid should then be responsible
to weight this recommendation with other constraints and implement
a certain job splitting.

4



• The Job Description Language: the SAM-Grid JDL contains application-
specific knowledge, such as the version of DZero code release, or the
concept of minimum bias file. This knowledge should be transparent
to the SAM-Grid JDL and interpreted by the Runjob layer.

• User Analysis Preparation: the SAM-Grid provides minimal sup-
port for the creation of the run time environment of user analysis code.
We believe that the integration with Runjob can provide such facili-
ties. This should be done preserving the capabilities of the SAM-Grid
to dynamically install software releases.

3 How SAM-Grid Uses mc runjob

SAM-Grid uses mc runjob to run three types of applications: monte carlo
chains, reconstruction, and file merging. In all cases, the job management
layer (application wrappers) prepares the environment for mc runjob at the
worker node, then passes control to it. The mc runjob code is dynamically
installed at the node and it is delivered via SAM.

In the case of the reconstruction and merging applications, the wrapper
prepares the mc runjob macro from configuration parameters coming either
from the user or from the execution site. In the case of monte carlo, the
wrapper prepares the pre-processing macro, with information such as the
montecarlo request id, then mc runjob gathers the rest of the information
from the SAM db server.

In general, we believe that the job management should provide generic
primitives to prepare the job, such as file delivery, environment variable set-
ting, application multiplicity. Runjob should take advantage of these primi-
tives, shielding itself from the details of the fabric environment.

5


